login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191349
Binomial sums: a(n) = Sum_{k=0..floor(n/3)} binomial(n-k,2*k)^2.
0
1, 1, 1, 2, 10, 37, 102, 251, 667, 2011, 6246, 18686, 54183, 157438, 466579, 1400509, 4202829, 12556360, 37480728, 112227269, 337221408, 1014992763, 3055963443, 9203918219, 27745375212, 83736861040, 252968402935, 764733200716, 2313088202001, 7000425465331
OFFSET
0,4
FORMULA
a(n) = sum(binomial(2*k,k)*sum(binomial(n+k-i,2*k)*binomial(n-k-i,2*i)*(-1)^(n-k-i),i=0..floor((n-k)/3)),k=0..n).
G.f.: sqrt((1-2*x+x^2+x^3+sqrt(1-4*x+6*x^2-6*x^3-11*x^4-2*x^5+x^6))/(2*(1-4*x+6*x^2-6*x^3-11*x^4-2*x^5+x^6))).
MATHEMATICA
Table[Sum[Binomial[n-k, 2k]^2, {k, 0, Floor[n/3]}], {n, 0, 100}]
a[n_] := HypergeometricPFQ[ ({1, 1, 2, 2, 0, 0}-n)/3, {1/2, 1/2, 1, -n, -n}, 729/16]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Feb 22 2013 *)
PROG
(Maxima) makelist(sum(binomial(n-k, 2*k)^2, k, 0, floor(n/3)), n, 0, 26);
CROSSREFS
Sequence in context: A144895 A236767 A154323 * A073110 A034547 A246604
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, May 31 2011
STATUS
approved