login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n and height k.
6

%I #21 Jul 16 2017 20:43:19

%S 1,1,1,1,1,2,1,4,1,1,7,2,1,12,6,1,1,20,12,2,1,33,27,8,1,1,54,53,16,2,

%T 1,88,108,44,10,1,1,143,208,88,20,2,1,232,405,208,65,12,1,1,376,768,

%U 415,130,24,2,1,609,1459,908,350,90,14,1,1,986,2734,1804,700,180,28,2,1,1596,5117,3776,1700,544,119,16,1

%N Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n and height k.

%C Row n has 1 + floor(n/2) entries.

%C Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).

%C T(n,1) = A000071(n+1) (Fibonacci numbers minus 1).

%C Sum_{k>=0} k * T(n,k) = A191315(n).

%C Extracting the even numbered rows, we obtain triangle A205946 with row sums A000984. The odd numbered rows yield triangle A205945 with row sums A001700. - _Gary W. Adamson_, Feb 01 2012

%H Alois P. Heinz, <a href="/A191314/b191314.txt">Rows n = 0..200, flattened</a>

%F G.f.: The g.f. of column k is z^{2k}/(F[k]*F[k+1]), where F[k] are polynomials in z defined by F[0]=1, F[1]=1-z, F[k]=F[k-1]-z^2*F[k-2] for k>=2. The coefficients of these polynomials form the triangle A108299.

%F Rows may be obtained by taking finite differences of A205573 columns from the top -> down. - _Gary W. Adamson_, Feb 01 2012

%e T(5,2) = 2 because we have HUUDD and UUDDH, where U=(1,1), D=(1,-1), H=(1,0).

%e Triangle starts:

%e 1;

%e 1;

%e 1, 1;

%e 1, 2;

%e 1, 4, 1;

%e 1, 7, 2;

%e 1, 12, 6, 1;

%e 1, 20, 12, 2;

%e 1, 33, 27, 8, 1;

%p F[0] := 1: F[1] := 1-z: for k from 2 to 12 do F[k] := sort(expand(F[k-1]-z^2*F[k-2])) end do: for k from 0 to 11 do h[k] := z^(2*k)/(F[k]*F[k+1]) end do: T := proc (n, k) options operator, arrow: coeff(series(h[k], z = 0, 20), z, n) end proc: for n from 0 to 16 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

%p # second Maple program:

%p b:= proc(x, y) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1,

%p (p->add(coeff(p, z, i)*z^max(i, y), i=0..degree(p,z)))

%p (b(x-1, y-1))+ b(x-1, y+1)+`if`(y=0, b(x-1, y), 0)))

%p end:

%p T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0)):

%p seq(T(n), n=0..14); # _Alois P. Heinz_, Mar 12 2014

%t b[x_, y_] := b[x, y] = If[y>x || y<0, 0, If[x==0, 1, Function [{p}, Sum[ Coefficient[p, z, i]*z^Max[i, y], {i, 0, Exponent[p, z]}]][b[x-1, y-1]] + b[x-1, y+1] + If[y==0, b[x-1, y], 0]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Mar 31 2015, after _Alois P. Heinz_ *)

%Y Cf. A001405, A000071, A191315.

%Y Cf. A205573, A205945, A001700, A205946, A000984.

%K nonn,tabf

%O 0,6

%A _Emeric Deutsch_, May 31 2011