Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jul 15 2022 02:37:12
%S 0,0,2,5,15,30,71,134,296,551,1188,2211,4720,8815,18722,35105,74307,
%T 139842,295223,557366,1174031,2222606,4672473,8866776,18607461,
%U 35384676,74139407,141248270,295524297,563959752,1178389423,2252131246,4700155088,8995122383,18751860084
%N Sum of the abscissae of the first returns to the horizontal axis (assumed to be 0 if there are no such returns) in all dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights).
%C a(n) = Sum_{k>=0} k*A191312(n,k).
%H Vincenzo Librandi, <a href="/A191313/b191313.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: g = z*(4*z-1+q)/(q*(1-z)^2*(1-2*z+q)), where q=sqrt(1-4*z^2).
%F a(n) ~ 2^n * (1 + 1/sqrt(2*Pi*n) + 1/3*(-1)^n/sqrt(2*Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014
%F Conjecture: n*(3*n-13)*a(n) +2*(-6*n^2+29*n-18)*a(n-1) +(3*n^2-13*n+24)*a(n-2) +2*(21*n^2-124*n+150)*a(n-3) +4*(-15*n^2+92*n-132) *a(n-4) +8*(n-3)*(3*n-10) *a(n-5)=0. - _R. J. Mathar_, Jun 14 2016
%e a(4)=15 because the sum of the abscissae of the first returns in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD is 0+4+3+2+2+4=15; here H=(1,0), U=(1,1), and D=(1,-1).
%p g := z*(4*z-1+sqrt(1-4*z^2))/((1-z)^2*sqrt(1-4*z^2)*(1-2*z+sqrt(1-4*z^2))): gser := series(g, z = 0, 37): seq(coeff(gser, z, n), n = 0 .. 34);
%t CoefficientList[Series[x*(4*x-1+Sqrt[1-4*x^2])/((1-x)^2*Sqrt[1-4*x^2]*(1-2*x+Sqrt[1-4*x^2])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%Y Cf. A191312.
%Y Partial sums of A226881.
%K nonn
%O 0,3
%A _Emeric Deutsch_, May 30 2011