login
a(1)=1; for n>1, a(n) = n*(10^n-1)/9 written in base n.
1

%I #13 Jan 05 2013 15:33:40

%S 1,10110,110100,1011130,3234210,22142230,123052510,523053070,

%T 2520607100,11111111110,479110292610,19641010776330,80101410369310,

%U 210510130141118110,1212103125891481260,315281211715711270,12138214138151315710,56015814091312161590,1780471401817161317410,6151213981715112481715110

%N a(1)=1; for n>1, a(n) = n*(10^n-1)/9 written in base n.

%C For n = 2 through 9, this is the decimal number with n digits all equal to n, then written in base n. For n>9 the reader has to separate the "digits" himself (so this is a fairly unsatisfactory sequence).

%C A000461(n) written in base n.

%e 4444 in base 4 is 1011130.

%p f:=n->n*(10^n-1)/9;

%p g:=n->convert(f(n),base,n);

%p for n from 2 to 20 do

%p t1:=g(n);

%p t2:=nops(t1);

%p lprint( [seq(t1[t2+1-i],i=1..t2)]);

%t Join[{1}, Table[s = FromDigits[Table[n, {n}]]; FromDigits[IntegerDigits[s, n]], {n, 2, 9}]] (* _T. D. Noe_, Dec 30 2012 *)

%K nonn,base

%O 1,2

%A _Ruskin Harding_, Dec 30 2012

%E Edited with Maple program by _N. J. A. Sloane_, Jan 05 2013