login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) = coefficient of x^n in expansion of (x+x^3+x^5)^k.
1

%I #31 Oct 20 2024 02:31:53

%S 1,0,1,1,0,1,0,2,0,1,1,0,3,0,1,0,3,0,4,0,1,0,0,6,0,5,0,1,0,2,0,10,0,6,

%T 0,1,0,0,7,0,15,0,7,0,1,0,1,0,16,0,21,0,8,0,1,0,0,6,0,30,0,28,0,9,0,1,

%U 0,0,0,19,0,50,0,36,0,10,0,1,0,0,3,0,45,0,77,0,45,0,11,0,1,0,0,0,16,0,90,0,112,0,55,0,12,0,1

%N Triangle T(n,k) = coefficient of x^n in expansion of (x+x^3+x^5)^k.

%C 1. Riordan Array (1,x+x^3+x^5) without first column.

%C 2. Riordan Array (1+x^2+x^4,x+x^3+x^5) numbering triangle (0,0).

%C 3. For the g.f. 1/(1-x-x^3-x^5) we have a(n)=sum(k=1..n, T(n,k)) (see A060961).

%C 4. For the e.g.f. exp(1-x-x^3-x^5) we have a(n)=n!*sum(k=1..n, T(n,k)/k!) (see A191237).

%C 5. Bell Polynomial of second kind B(n,k){1,0,6,0,120,0,0,...,0}=n!/k!*T(n,k).

%C For more formulas see preprints.

%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Janjic/janjic73.html">Binomial Coefficients and Enumeration of Restricted Words</a>, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.

%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065 [math.CO], 2011.

%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

%F T(n,k) = Sum_{j=0..k} binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1)/2.

%e Triangle begins:

%e 1,

%e 0,1,

%e 1,0,1,

%e 0,2,0,1,

%e 1,0,3,0,1,

%e 0,3,0,4,0,1,

%e 0,0,6,0,5,0,1,

%e 0,2,0,10,0,6,0,1,

%e 0,0,7,0,15,0,7,0,1,

%e 0,1,0,16,0,21,0,8,0,1

%p A191238 := proc(n,k)

%p add(binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1),j=0..k)/2 ;

%p end proc:

%p seq(seq(A191238(n,m),m=1..n),n=1..10) ;# _R. J. Mathar_, Dec 16 2015

%o (Maxima)

%o T(n,k):=sum(binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1),j,0,k)/2;

%Y Cf. A060961 (row sums).

%K nonn,tabl

%O 1,8

%A _Vladimir Kruchinin_, May 27 2011