login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 3x+1 are in a.
10

%I #35 Aug 14 2023 08:28:19

%S 1,4,10,13,28,31,37,40,82,85,91,94,109,112,118,121,244,247,253,256,

%T 271,274,280,283,325,328,334,337,352,355,361,364,730,733,739,742,757,

%U 760,766,769,811,814,820,823,838,841,847,850,973,976,982,985,1000,1003,1009,1012,1054,1057,1063,1066,1081,1084,1090,1093,2188

%N Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 3x+1 are in a.

%C For general discussions, see A190803 and A191106.

%C Numbers whose base-3 representation ends in 1 and contains no 2; primitive members of A005836. - _Peter Munn_, Aug 14 2023

%H Robert Israel, <a href="/A191107/b191107.txt">Table of n, a(n) for n = 1..10000</a>

%H Barry Brent, <a href="https://doi.org/10.20944/preprints202306.1164.v6">On the Constant Terms of Certain Laurent Series</a>, Preprints (2023) 2023061164.

%F Conjecture: a(n) = 3*A003278(n) - 2 = (A055246(n) + 1)/2. - _L. Edson Jeffery_, Nov 25 2015

%F Conjecture: a(n) = A190640(n)/2. - _Michel Marcus_, Aug 24 2016

%F Conjecture: a(n) = A003278(2n-1). - _Arie Bos_, Aug 07 2022

%p N:= 100000: # to get all terms <= N

%p with(queue):

%p Q:= new(1):

%p A:= {}:

%p while not empty(Q) do

%p s:= dequeue(Q);

%p A:= A union {s};

%p for t in {3*s-2,3*s+1} minus A do

%p if t <= N then enqueue(Q,t) fi

%p od

%p od:

%p sort(convert(A,list)); # _Robert Israel_, Nov 29 2015

%t h = 3; i = -2; j = 3; k = 1; f = 1; g = 7;

%t a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191107 *)

%t b = (a + 2)/3; c = (a - 1)/3; r = Range[1, 900];

%t d = Intersection[b, r] (* A003278 *)

%t e = Intersection[c, r] (* A005836 *)

%Y Cf. A003278, A005836, A055246, A190640, A190803, A191106.

%K nonn,base,easy

%O 1,2

%A _Clark Kimberling_, May 26 2011