login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^(n^2)*(2^(2*n+1) - 1).
1

%I #49 Jan 31 2019 18:39:35

%S 1,14,496,65024,33488896,68685922304,562881233944576,

%T 18446181123756130304,2417833192485184639860736,

%U 1267648182376590172238353793024,2658454723919231517578212623857483776,22300742540074631571703972465034240945291264

%N a(n) = 2^(n^2)*(2^(2*n+1) - 1).

%C First differences of A002416.

%H Muniru A Asiru, <a href="/A190999/b190999.txt">Table of n, a(n) for n = 0..49</a>

%p a:= n-> (f-> f(n+1)-f(n))(j->2^(j^2)):

%p seq(a(n), n=0..12); # _Alois P. Heinz_, Jan 31 2019

%t A002416 = Table[2^(n^2), {n, 0, 20}]; GetDiff[seq_List] := Drop[seq, 1] - Drop[seq, -1]; A190999 = GetDiff[A002416]

%o (PARI) a(n) = 2^(n^2)*(2^(2*n+1) - 1) \\ _Georg Fischer_, Jan 31 2019

%o (Sage) [2^(n^2)*(2^(2*n+1) - 1) for n in (0..20)] # _Georg Fischer_, Jan 31 2019

%Y Cf. A002416.

%K nonn,easy

%O 0,2

%A _Vladimir Joseph Stephan Orlovsky_, Jun 18 2011

%E Entry revised by _N. J. A. Sloane_, Dec 08 2018, with new offset.

%E Programs and offset in b-file modified by _Georg Fischer_, Jan 31 2019.