login
a(n) = 10*a(n-1) - 8*a(n-2), with a(0)=0, a(1)=1.
5

%I #19 Dec 23 2023 09:45:02

%S 0,1,10,92,840,7664,69920,637888,5819520,53092096,484364800,

%T 4418911232,40314193920,367790649344,3355392942080,30611604226048,

%U 279272898723840,2547836153430016,23244178344509440,212059094217654272,1934637515420467200,17649902400463437824

%N a(n) = 10*a(n-1) - 8*a(n-2), with a(0)=0, a(1)=1.

%H G. C. Greubel, <a href="/A190990/b190990.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-8).

%F G.f.: x / ( 1-10*x+8*x^2 ). - _R. J. Mathar_, May 26 2011

%F E.g.f.: (1/sqrt(17))*exp(5*x)*sinh(sqrt(17)*x). - _G. C. Greubel_, Sep 15 2022

%t LinearRecurrence[{10,-8}, {0,1}, 50]

%o (Magma) [Round(2^(3*(n-1)/2)*Evaluate(ChebyshevU(n), 5/(2*Sqrt(2)))): n in [0..30]]; // _G. C. Greubel_, Sep 15 2022

%o (SageMath)

%o A190990 = BinaryRecurrenceSequence(10, -8, 0, 1)

%o [A190990(n) for n in (0..30)] # _G. C. Greubel_, Sep 15 2022

%Y Cf. A190958 (index to generalized Fibonacci sequences)

%K nonn

%O 0,3

%A _Vladimir Joseph Stephan Orlovsky_, May 24 2011