login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 10*a(n-1) - 3*a(n-2), with a(0)=0, a(1)=1.
2

%I #27 Dec 23 2023 09:44:45

%S 0,1,10,97,940,9109,88270,855373,8288920,80323081,778364050,

%T 7542671257,73091620420,708288190429,6863607043030,66511205859013,

%U 644521237461040,6245678757033361,60523223857950490,586495202308404817,5683382351510196700,55074337908176752549

%N a(n) = 10*a(n-1) - 3*a(n-2), with a(0)=0, a(1)=1.

%H Harvey P. Dale, <a href="/A190985/b190985.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-3).

%F G.f.: x/(1-10x+3*x^2). - _Philippe Deléham_, Oct 12 2011

%F E.g.f.: (1/sqrt(22))*exp(5*x)*sinh(sqrt(22)*x). - _G. C. Greubel_, Sep 03 2022

%t LinearRecurrence[{10,-3}, {0,1}, 50]

%o (Magma) [Round(3^((n-1)/2)*Evaluate(ChebyshevU(n), 5/Sqrt(3))): n in [0..30]]; // _G. C. Greubel_, Sep 03 2022

%o (SageMath)

%o A190985 = BinaryRecurrenceSequence(10, -3, 0, 1)

%o [A190985(n) for n in (0..30)] # _G. C. Greubel_, Sep 03 2022

%Y Cf. A190958 (index to generalized Fibonacci sequences).

%K nonn

%O 0,3

%A _Vladimir Joseph Stephan Orlovsky_, May 24 2011