login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 9*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.
2

%I #29 Dec 23 2023 09:45:27

%S 0,1,9,76,639,5371,45144,379441,3189249,26806036,225308079,1893742531,

%T 15917142384,133785568801,1124484407289,9451431821596,79440464357919,

%U 667707020113291,5612160859230024,47170912632503761,396477409396383729,3332442121404934756

%N a(n) = 9*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.

%H G. C. Greubel, <a href="/A190982/b190982.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-5).

%F G.f.: x/(1 - 9*x + 5*x^2). - _Philippe Deléham_, Oct 12 2011

%F E.g.f.: (2/sqrt(61))*exp(9*x/2)*sinh(sqrt(61)*x/2). - _G. C. Greubel_, Aug 26 2022

%t LinearRecurrence[{9,-5}, {0,1}, 50]

%o (Magma) [Round(5^((n-1)/2)*Evaluate(ChebyshevU(n), 9/(2*Sqrt(5)))): n in [0..30]]; // _G. C. Greubel_, Aug 26 2022

%o (SageMath)

%o A190982 = BinaryRecurrenceSequence(9,-5,0,1)

%o [A190982(n) for n in (0..30)] # _G. C. Greubel_, Aug 26 2022

%Y Cf. A190958 (index to generalized Fibonacci sequences).

%K nonn

%O 0,3

%A _Vladimir Joseph Stephan Orlovsky_, May 24 2011