login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = binomial(n+k,n-k) * k! / floor(k/2)!^2.
3

%I #12 Jul 23 2017 03:53:33

%S 1,1,1,1,3,2,1,6,10,6,1,10,30,42,6,1,15,70,168,54,30,1,21,140,504,270,

%T 330,20,1,28,252,1260,990,1980,260,140,1,36,420,2772,2970,8580,1820,

%U 2100,70,1,45,660,5544,7722,30030,9100,16800,1190,630

%N Triangle read by rows: T(n,k) = binomial(n+k,n-k) * k! / floor(k/2)!^2.

%C The triangle may be regarded as a generalization of the triangle A063007.

%C A063007(n,k) = binomial(n+k, n-k)*(2*k)$;

%C T(n,k) = binomial(n+k, n-k)*(k)$.

%C Here n$ denotes the swinging factorial A056040(n). As A063007 is a decomposition of the central Delannoy numbers A001850, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.

%C T(n,n) = A056040(n) which can be seen as extended central binomial numbers.

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostCatalanNumbers">The lost Catalan numbers</a>

%H R. A. Sulanke, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Sulanke/delannoy.html">Objects counted by the central Delannoy numbers</a>, J. Integer Seq. 6 (2003), no. 1, Article 03.1.5.

%F T(n,1) = A000217(n). T(n,2) = 2*binomial(n+2,4) (Cf. A034827).

%e [0] 1

%e [1] 1, 1

%e [2] 1, 3, 2

%e [3] 1, 6, 10, 6

%e [4] 1, 10, 30, 42, 6

%e [5] 1, 15, 70, 168, 54, 30

%e [6] 1, 21, 140, 504, 270, 330, 20

%e [7] 1, 28, 252, 1260, 990, 1980, 260, 140

%p A190909 := (n,k) -> binomial(n+k,n-k)*k!/iquo(k,2)!^2:

%p seq(print(seq(A190909(n,k),k=0..n)),n=0..7);

%t Flatten[Table[Binomial[n+k,n-k] k!/(Floor[k/2]!)^2,{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Mar 25 2012 *)

%Y Cf. Row sums: A190910; A056040, A063007, A085478, A088617.

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, May 24 2011