login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the greatest prime divisor of 10^(2*n)+10^n+1.
1

%I #24 Oct 27 2024 10:56:51

%S 37,37,333667,9901,2906161,333667,10838689,99990001,440334654777631,

%T 2906161,1344628210313298373,999999000001,900900900900990990990991,

%U 10838689,4185502830133110721,9999999900000001,13168164561429877,440334654777631,3931123022305129377976519,39526741

%N a(n) is the greatest prime divisor of 10^(2*n)+10^n+1.

%C (10^(2*n)+10^n+1)^3 is palindrome.

%H Amiram Eldar, <a href="/A190839/b190839.txt">Table of n, a(n) for n = 1..158</a>

%H factordb, <a href="http://factordb.com/index.php?query=10^%282*n%29%2B10^n%2B1&amp;use=n&amp;n=1&amp;VP=on&amp;VC=on&amp;EV=on&amp;OD=on&amp;PR=on&amp;FF=on&amp;PRP=on&amp;CF=on&amp;U=on&amp;C=on&amp;perpage=200&amp;format=1&amp;sent=Show">10^(2*n)+10^n+1</a>.

%F a(n) = A006530(A066138(n)). - _R. J. Mathar_, Oct 30 2015

%t f[n_]:=Max[Transpose[FactorInteger[10^(2n)+10^n+1]][[1]]]; Array[f,20] (* _Harvey P. Dale_, Jun 10 2011 *)

%o (PARI) u(n)=10^(2*n)+10^n+1; for(n=1,30,f=factor(u(n));print1(f[matsize(f)[1],1],", ")) \\ _Joerg Arndt_, May 27 2011

%Y Cf. A002780, A006530, A066138.

%K nonn,base

%O 1,1

%A _Vladimir Shevelev_, May 21 2011