login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Gauss' approximation for the number of primes below 10^n.
10

%I #29 Feb 07 2024 20:39:24

%S 5,29,177,1245,9629,78627,664917,5762208,50849234,455055614,

%T 4118066400,37607950280,346065645809,3204942065691,29844571475287,

%U 279238344248556,2623557165610821,24739954309690414,234057667376222381,2220819602783663483

%N Gauss' approximation for the number of primes below 10^n.

%C The offset logarithmic integral or Eulerian logarithmic integral Li(10^n)-Li(2), i.e., integral(2..x, dt/log(t)), appears in Gauss’s formula for counting prime numbers < 10^n and is sometimes referred to as the "European" definition. - _Vladimir Pletser_, Mar 17 2013

%D Jonathan Borwein, David H. Bailey, "Mathematics by Experiment", A. K. Peters, 2004, p. 65 (Table 2.2).

%H Vladimir Pletser, <a href="/A190802/b190802.txt">Table of n, a(n) for n = 1..500</a>

%H Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, <a href="https://arxiv.org/abs/1807.08899">The Bateman-Horn Conjecture: Heuristics, History, and Applications</a>, arXiv:1807.08899 [math.NT], 2018-2019. See Table 1 p. 6.

%F a(n) = round(integral(dt/log(t),t=2..10^n)).

%p seq(round(evalf(integrate(1/log(t),t=2..10^n))), n=1..21);

%t Table[Round[Integrate[1/Log[t],{t,2,10^n}]],{n,20}] (* _James C. McMahon_, Feb 06 2024 *)

%Y Cf. A006880, A106313.

%K nonn

%O 1,1

%A _Nathaniel Johnston_, May 25 2011