login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190796
Number of digits in the minimal base-phi representation of n.
3
1, 4, 5, 5, 8, 8, 9, 9, 9, 9, 9, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
OFFSET
1,2
COMMENTS
See A130600(n) for the digits in the minimal base phi representation of n.
a(n) <= 2 * ceiling( log(n) / log(phi) ) for n > 1.
REFERENCES
Michel Dekking and Ad van Loon. "On the representation of the natural numbers by powers of the golden mean." Fib. Quart. 61:2 (May 2023), 105-118.
LINKS
Michel Dekking and Ad van Loon, On the representation of the natural numbers by powers of the golden mean, arXiv:2111.07544 [math.NT], 15 Nov 2021.
FORMULA
a(n) = A055778(n) + A133775(n).
From Michel Dekking, Jun 19 2024: (Start)
Let (L(n)) = (2, 1, 3, 4, 7, 11, 18, 29, 47, ...) = A000032 be the Lucas numbers.
If L(2n) <= i <= L(2n+1), then a(i) = 4n+1; if L(2n+1)+1 <= i < L(2n+2), then a(i) = 4n+4.
This formula follows from Proposition 4.2. in "On the representation of the natural numbers by powers of the golden mean".
For example if n=1: L(2)=3, L(3)=4, L(4)=7, so a(3) = a(4) = 5, and a(5) = a(6) = 8.
Let (v(n)) = 1,4,5,8,9,12,... be the sequence of values taken by (a(n)). Then it follows directly from the Lucas formula for (a(n)) that v(n) = A042948(n) (where A042948 has been given offset 1, as it should; see also the comment by Jianing Song in A042948).
(End)
MATHEMATICA
nn = 100; len = 2*Ceiling[Log[GoldenRatio, nn]]; Table[d = RealDigits[n, GoldenRatio, len]; last1 = Position[d[[1]], 1][[-1, 1]]; last1, {n, 1, nn}]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
T. D. Noe, May 20 2011
STATUS
approved