login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Lucas Aurifeuillian primitive part B of Lucas(10*n - 5).
2

%I #15 Apr 03 2023 10:36:12

%S 11,31,151,911,541,3641,272611,18451,12760031,7947701,767131,

%T 4106261531,28144128251,34379101,120196353941,823837075741,51164521,

%U 4215154433351,2918000731816531,73998076231,12462174208709101,939587136717207031,3467131047901

%N Lucas Aurifeuillian primitive part B of Lucas(10*n - 5).

%H Arkadiusz Wesolowski, <a href="/A190781/b190781.txt">Table of n, a(n) for n = 1..250</a>

%H John Brillhart, Peter L. Montgomery and Robert D. Silverman, <a href="http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917832-6/">Tables of Fibonacci and Lucas factorizations</a>, Math. Comp. 50 (1988), pp. 251-260, S1.

%H C. K. Caldwell, "Top Twenty" page, <a href="https://t5k.org/top20/page.php?id=21">Lucas Aurifeuillian primitive part</a>

%F a(n) = GCD(A061447(10*n-5), A032908(n)*A106729(n-1) + 1).

%t lst = {1}; n = 23; Do[f = LucasL[k]; Do[f = f/GCD[f, lst[[d]]], {d, Most@Divisors[k]}]; AppendTo[lst, f], {k, 2, 10*n - 5}]; Table[GCD[lst[[5*k]], 5*Fibonacci[k]*(Fibonacci[k] + 1) + 1], {k, 1, 2*n - 1, 2}]

%Y Cf. A061447, A190757.

%K nonn

%O 1,1

%A _Arkadiusz Wesolowski_, Dec 29 2012