login
A190729
E.g.f. exp(x+1/6*x^3+1/24*x^4)
0
1, 1, 1, 2, 6, 16, 46, 176, 722, 2906, 13106, 66716, 345676, 1849992, 10802156, 66543296, 418075036, 2750329276, 19145683612, 137410493656, 1012831509736, 7785886770656, 62105849642376, 507682088621632, 4271236045340056, 37171085370443576
OFFSET
0,4
FORMULA
a(n)=n!*sum(k=0..n, sum(j=floor((n-k)/3)..floor((n-k)/2), binomial(j,n-k-2*j)*binomial(k,j)*2^(-2*n+2*k+3*j)*3^(-j))/k!).
D-finite with recurrence +6*a(n) -6*a(n-1) -3*(n-1)*(n-2)*a(n-3) -(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Aug 20 2021
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x+x^3/6+x^4/24], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Apr 08 2018 *)
PROG
(Maxima)
a(n):=n!*sum(sum(binomial(j, n-k-2*j)*binomial(k, j)*2^(-2*n+2*k+3*j)*3^(-j), j, floor((n-k)/3), floor((n-k)/2))/k!, k, 0, n);
CROSSREFS
Sequence in context: A182267 A003291 A148442 * A071726 A148443 A148444
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 26 2011
STATUS
approved