login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least number k>1 such that (tau(k-1)+tau(k+1))/tau(k) = n where tau = A000005.
1

%I #28 Jul 25 2024 08:17:07

%S 6,34,39,7,11,19,29,41,79,71,179,199,181,239,883,419,701,839,881,1429,

%T 2351,1259,1871,2161,4049,3079,3361,2521,6481,4159,6299,5279,11551,

%U 5039,20789,7561,25919,10079,16561,13441,38611,13859,23761,21839,100673,20161

%N Least number k>1 such that (tau(k-1)+tau(k+1))/tau(k) = n where tau = A000005.

%p with(numtheory):

%p a:= proc(n) local k;

%p for k from 2 while (tau(k-1)+tau(k+1)) /tau(k)<>n do od; k

%p end:

%p seq(a(n), n=1..50); # _Alois P. Heinz_, May 19 2011

%t tau = DivisorSigma[0, #]&;

%t a[n_] := For[k=2, True, k++, If[(tau[k-1]+tau[k+1])/tau[k]==n, Return[k]]];

%t Array[a, 50] (* _Jean-François Alcover_, Mar 27 2017 *)

%t Module[{nn=300000,tau},tau=(#[[1]]+#[[3]])/#[[2]]&/@Partition[DivisorSigma[ 0,Range[nn]],3,1];Flatten[Table[Position[tau,n,1,1],{n,50}]]+1] (* _Harvey P. Dale_, Nov 24 2022 *)

%o (Sage)

%o def A190644(n):

%o tau = number_of_divisors

%o return next((k for k in IntegerRange(2,infinity) if tau(k-1)+tau(k+1) == n*tau(k))) # _D. S. McNeil_, May 19 2011

%Y Cf. A000005 (number of divisors of n), A190612.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, May 15 2011