login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190535
Number of (n+2) X (n+2) symmetric binary matrices without the pattern 0 1 1 diagonally.
2
56, 672, 13440, 443520, 23950080, 2107607040, 301387806720, 69921971159040, 26290661155799040, 16011012643881615360, 15786858466867272744960, 25195826113120167300956160, 65080818850189392138369761280
OFFSET
1,1
COMMENTS
From John M. Campbell, May 25 2011: (Start)
a(n) equals the determinant of the (n+4) X (n+4) "Fibonacci matrix" whose (i,j)-entry is equal to F_{i+1} if i=j and is equal to 1 otherwise. For example, a(2)=672 equals the determinant of the 6 X 6 Fibonacci matrix
{{1,1,1,1,1,1},
{1,2,1,1,1,1},
{1,1,3,1,1,1},
{1,1,1,5,1,1},
{1,1,1,1,8,1},
{1,1,1,1,1,13}}. (End)
LINKS
EXAMPLE
Some solutions for 4 X 4:
..0..1..0..1....1..1..1..1....0..1..1..0....0..1..1..1....1..1..1..1
..1..0..0..0....1..0..0..0....1..1..1..0....1..1..0..1....1..0..0..1
..0..0..0..0....1..0..0..0....1..1..0..1....1..0..0..1....1..0..0..0
..1..0..0..0....1..0..0..1....0..0..1..1....1..1..1..0....1..1..0..0
MATHEMATICA
Table[Det[Array[KroneckerDelta[#1, #2](Fibonacci[#1+1]-1)+1&, {n, n}]], {n, 5, 20}] (* John M. Campbell, May 25 2011 *)
PROG
(PARI) a(n) = matdet(matrix(n+4, n+4, i, j, if (i==j, fibonacci(i+1), 1))); \\ Michel Marcus, Jan 03 2016
CROSSREFS
Sequence in context: A264212 A027813 A199914 * A190604 A136006 A138410
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 12 2011
STATUS
approved