login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n + [ns/r] + [nt/r] + [nu/r] + [nv/r] + [nw/r], where r=sin(x), s=cos(x), t=tan(x), u=csc(x), v=sec(x), w=cot(x), x=Pi/5.
8

%I #8 Apr 09 2021 22:14:37

%S 9,19,31,41,52,64,74,85,97,107,118,129,140,151,162,173,184,195,205,

%T 216,227,239,249,261,271,282,294,304,313,327,337,348,359,370,381,392,

%U 402,412,425,436,447,457,469,480,490,501,513,523,534,545,557,567,578,589,599,612,621,631,644,655,665,677,687,699

%N a(n) = n + [ns/r] + [nt/r] + [nu/r] + [nv/r] + [nw/r], where r=sin(x), s=cos(x), t=tan(x), u=csc(x), v=sec(x), w=cot(x), x=Pi/5.

%C This is one of six sequences that partition the positive integers. In general, suppose that r, s, t, u, v, w are positive real numbers for which the sets {i/r : i>=1}, {j/s : j>=1}, {k/t : k>=1, {h/u : h>=1}, {p/v : p>=1}, {q/w : q>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the six sets are jointly ranked. Define b(n), c(n), d(n), e(n), f(n) as the ranks of n/s, n/t, n/u, n/v, n/w respectively. It is easy to prove that

%C a(n) = n + [ns/r] + [nt/r] + [nu/r] + [nv/r] + [nw/r],

%C b(n) = [nr/s] + [nt/s] + [nu/s] + [nv/s] + [nw/s],

%C c(n) = [nr/t] + [ns/t] + [nu/t] + [nv/t] + [nw/t],

%C d(n) = n + [nr/u] + [ns/u] + [nt/u] + [nv/u] + [nw/u],

%C e(n) = n + [nr/v] + [ns/v] + [nt/v] + [nu/v] + [nw/v],

%C f(n) = n + [nr/w] + [ns/w] + [nt/w] + [nu/w] + [nv/w], where []=floor. Choosing r=sin(x), s=cos(x), t=tan(x), u=csc(x), v=sec(x), w=cot(x), x=Pi/5, gives a=A190513, b=A190514, c=A190515, d=A190516, e=A190517, f=A190518.

%t x = Pi/5;

%t r=Sin[x]; s=Cos[x]; t=Tan[x]; u=1/r; v=1/s; w=1/t;

%t p[n_, h_, k_] := Floor[n*h/k]

%t a[n_]:=n+p[n,s,r]+p[n,t,r]+p[n,u,r]+p[n,v,r]+p[n,w,r]

%t b[n_]:=n+p[n,r,s]+p[n,t,s]+p[n,u,s]+p[n,v,s]+p[n,w,s]

%t c[n_]:=n+p[n,r,t]+p[n,s,t]+p[n,u,t]+p[n,v,t]+p[n,w,t]

%t d[n_]:=n+p[n,r,u]+p[n,s,u]+p[n,t,u]+p[n,v,u]+p[n,w,u]

%t e[n_]:=n+p[n,r,v]+p[n,s,v]+p[n,t,v]+p[n,u,v]+p[n,w,v]

%t f[n_]:=n+p[n,r,w]+p[n,s,w]+p[n,t,w]+p[n,u,w]+p[n,v,w]

%t Table[a[n], {n,1,120}] (*A190513*)

%t Table[b[n], {n,1,120}] (*A190514*)

%t Table[c[n], {n,1,120}] (*A190515*)

%t Table[d[n], {n,1,120}] (*A190516*)

%t Table[e[n], {n,1,120}] (*A190517*)

%t Table[f[n], {n,1,120}] (*A190518*)

%Y Cf. A190514, A190515, A190516, A190517, A190518 (the other members of the partition).

%K nonn

%O 1,1

%A _Clark Kimberling_, May 11 2011