login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n + [nr/s] + [nt/s] + [nu/s] where r=golden ratio, s=r^2, t=r^3, u=r^4, and [] represents the floor function.
12

%I #63 Oct 20 2024 02:09:21

%S 4,11,15,22,29,33,40,44,51,58,62,69,76,80,87,91,98,105,109,116,120,

%T 127,134,138,145,152,156,163,167,174,181,185,192,199,203,210,214,221,

%U 228,232,239,243,250,257,261,268,275,279,286,290,297,304,308,315,319,326,333,337,344,351,355,362,366,373,380,384,391,398,402,409

%N a(n) = n + [nr/s] + [nt/s] + [nu/s] where r=golden ratio, s=r^2, t=r^3, u=r^4, and [] represents the floor function.

%C See A190508.

%C From _Clark Kimberling_, Nov 13 2022: (Start)

%C This is the third of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:

%C (1) v o u, defined by (v o u)(n) = v(u(n));

%C (2) u o v';

%C (3) v o u';

%C (4) v' o u'.

%C Every positive integer is in exactly one of the four sequences. For the reverse composites, u o v, u o v', u' o v, u' o v', see A356104 to A356107.

%C Assume that if w is any of the sequences u, v, u', v', then lim_{n->oo} w(n)/n exists and defines the (limiting) density of w. For w = u,v,u',v', denote the densities by r,s,r',s'. Then the densities of sequences (1)-(4) exist, and

%C 1/(r*r') + 1/(r*s') + 1/(s*s') + 1/(s*r') = 1.

%C For this sequence, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.

%C (1) v o u = (2, 6, 8, 13, 17, 20, 24, 26, 31, 35, 38, 42, ...) = A356217

%C (2) v' o u = (1, 5, 7, 10, 14, 16, 19, 21, 25, 28, 30, 34, ...) = A356218

%C (3) v o u' = (4, 11, 15, 22, 29, 33, 40, 44, 51, 58, 62, 76, ...) = this sequence

%C (4) v' o u' = (3, 9, 12, 18, 23, 27, 32, 36, 41, 47, 50, 56, ...) = A356220

%C (End)

%H Vincenzo Librandi, <a href="/A190509/b190509.txt">Table of n, a(n) for n = 1..10000</a>

%H Weiru Chen and Jared Krandel, <a href="https://arxiv.org/abs/1810.11938">Interpolating Classical Partitions of the Set of Positive Integers</a>, arXiv:1810.11938 [math.NT], 2018. See sequence D1 p. 4. Also in <a href="https://doi.org/10.1007/s11139-019-00196-3">The Ramanujan Journal</a>, (2020).

%F A190508: a(n) = n + [nr] + [nr^2] + [nr^3];

%F A190509: b(n) = [n/r] + n + [nr] + [nr^2];

%F A054770: c(n) = [n/r^2] + [n/r] + n + [nr];

%F A190511: d(n) = [n/r^3] + [n/r^2] + [n/r] + n.

%F a(n) = 3*A000201(n)+n, since r/s = 1/r = r-1, and u/s = r^2 = r+1. - _Michel Dekking_, Sep 06 2017

%F a(n) = A000201(n) + A003623(n). - _Primoz Pirnat_, Jan 08 2021

%p r:=(1+sqrt(5))/2: s:=r^2: t:=r^3: u:=r^4: a:=n->n+floor(n*r/s)+floor(n*t/s)+floor(n*u/s): seq(a(n),n=1..70); # _Muniru A Asiru_, Nov 01 2018

%t (See A190508.)

%t Table[3 Floor[n (Sqrt[5] + 1) / 2] + n, {n, 1, 100}] (* _Vincenzo Librandi_, Nov 01 2018 *)

%o (PARI) a(n) = 3*floor(n*(sqrt(5)+1)/2) + n; \\ _Michel Marcus_, Sep 10 2017; after _Michel Dekking_'s formula

%o (Magma) [3*Floor(n*(Sqrt(5)+1)/2) + n: n in [1..80]]; // _Vincenzo Librandi_, Nov 01 2018

%o (Python)

%o from math import isqrt

%o def A190509(n): return n+((m:=n+isqrt(5*n**2))&-2)+(m>>1) # _Chai Wah Wu_, Aug 10 2022

%Y Cf. A054770, A190508, A190511.

%Y Cf. A000201, A001622, A003623, A340429.

%K nonn

%O 1,1

%A _Clark Kimberling_, May 11 2011