login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positions of 2 in A190483.
24

%I #18 Mar 12 2021 07:51:39

%S 2,7,12,14,19,24,31,36,41,43,48,53,60,65,70,72,77,82,84,89,94,101,106,

%T 111,113,118,123,130,135,140,142,147,152,159,164,171,176,181,183,188,

%U 193,200,205,210,212,217,222,229,234,239,241,246,251,253,258,263,270,275,280,282,287,292,299,304,309,311,316

%N Positions of 2 in A190483.

%C See A190483.

%H G. C. Greubel, <a href="/A190486/b190486.txt">Table of n, a(n) for n = 1..1000</a>

%t r = Sqrt[2]; b = 2; c = 1;

%t f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];

%t t = Table[f[n], {n, 1, 200}] (* A190483 *)

%t Flatten[Position[t, 0]] (* A190484 *)

%t Flatten[Position[t, 1]] (* A190485 *)

%t Flatten[Position[t, 2]] (* A190486 *)

%o (Python)

%o from sympy import sqrt, floor

%o r=sqrt(2)

%o def a190483(n): return floor((2*n + 1)*r) - 2*floor(n*r) - floor(r)

%o print([n for n in range(1, 501) if a190483(n)==2]) # _Indranil Ghosh_, Jul 02 2017

%Y Cf. A190483, A190484, A190485.

%K nonn

%O 1,1

%A _Clark Kimberling_, May 11 2011