%I #21 May 06 2021 22:12:31
%S 3,5,10,15,17,20,22,27,29,32,34,39,44,46,51,56,58,61,63,68,73,75,80,
%T 85,87,90,92,97,99,102,104,109,114,116,119,121,126,128,131,133,138,
%U 143,145,150,155,157,160,162,167,169,172,174,179,184,186,189,191,196,198,201,203,208,213,215
%N Positions of 0 in A190483.
%C See A190483.
%H G. C. Greubel, <a href="/A190484/b190484.txt">Table of n, a(n) for n = 1..1000</a>
%t r = Sqrt[2]; b = 2; c = 1;
%t f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
%t t = Table[f[n], {n, 1, 200}] (* A190483 *)
%t Flatten[Position[t, 0]] (* A190484 *)
%t Flatten[Position[t, 1]] (* A190485 *)
%t Flatten[Position[t, 2]] (* A190486 *)
%o (Python)
%o from sympy import sqrt, floor
%o r=sqrt(2)
%o def a190483(n): return floor((2*n + 1)*r) - 2*floor(n*r) - floor(r)
%o print([n for n in range(1, 501) if a190483(n)==0]) # _Indranil Ghosh_, Jul 02 2017
%Y Cf. A190483.
%K nonn
%O 1,1
%A _Clark Kimberling_, May 11 2011