%I #20 Mar 12 2021 07:53:30
%S 1,2,0,1,0,1,2,1,1,0,1,2,1,2,0,1,0,1,2,0,1,0,1,2,1,1,0,1,0,1,2,0,1,0,
%T 1,2,1,1,0,1,2,1,2,0,1,0,1,2,1,1,0,1,2,1,1,0,1,0,1,2,0,1,0,1,2,1,1,0,
%U 1,2,1,2,0,1,0,1,2,1,1,0,1,2,1,2,0,1,0,1,2,0,1,0,1,2,1,1,0,1,0,1,2,0,1,0,1,2,1,1,0,1,2,1,2,0
%N a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),2,1) and []=floor.
%C Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
%C Examples:
%C (golden ratio,2,1): A190427-A190430
%C (sqrt(2),2,0): A190480
%C (sqrt(2),2,1): A190483-A190486
%C (sqrt(2),3,0): A190487-A190490
%C (sqrt(2),3,1): A190491-A190495
%C (sqrt(2),3,2): A190496-A190500
%H G. C. Greubel, <a href="/A190483/b190483.txt">Table of n, a(n) for n = 1..1000</a>
%t r = Sqrt[2]; b = 2; c = 1;
%t f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
%t t = Table[f[n], {n, 1, 200}] (* A190483 *)
%t Flatten[Position[t, 0]] (* A190484 *)
%t Flatten[Position[t, 1]] (* A190485 *)
%t Flatten[Position[t, 2]] (* A190486 *)
%o (Python)
%o from sympy import sqrt, floor
%o r=sqrt(2)
%o def a(n): return floor((2*n + 1)*r) - 2*floor(n*r) - floor(r)
%o print([a(n) for n in range(1, 501)]) # _Indranil Ghosh_, Jul 02 2017
%Y Cf. A190484, A190485, A190486.
%K nonn
%O 1,2
%A _Clark Kimberling_, May 11 2011