login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{k>=1} (1/2)^A058331(k); based on a diagonal of the natural number array, A000027.
4

%I #23 Mar 16 2020 09:29:25

%S 1,2,6,9,5,5,0,3,2,4,6,5,0,4,8,5,7,8,4,1,6,2,5,0,5,4,3,6,3,5,7,2,5,6,

%T 7,8,8,0,6,9,6,2,1,6,8,1,9,0,1,4,6,8,0,0,2,3,1,5,0,6,1,7,8,4,9,2,5,0,

%U 9,9,2,2,7,6,2,2,7,3,0,7,5,3,8,2,1,6,5,1,3,8,3,2,3,0,9,6,1,4,3,1,3,9,1,4,3,1,4,5,8,3,2,5,4,2,1,3,0,3,3,2

%N Decimal expansion of Sum_{k>=1} (1/2)^A058331(k); based on a diagonal of the natural number array, A000027.

%C See A190404.

%H Danny Rorabaugh, <a href="/A190407/b190407.txt">Table of n, a(n) for n = 0..10000</a>

%F Equals Sum_{k>=1} (1/2)^V(k), where V=A058331 (1+2*k^2).

%e 0.12695503246504857842...

%t (* See also A190404 *)

%t RealDigits[(EllipticTheta[3, 0, 1/4]-1)/4, 10, 120] // First (* _Jean-François Alcover_, Feb 13 2013 *)

%o (Sage)

%o def A190407(b): # Generate the constant with b bits of precision

%o return N(sum([(1/2)^(2*k^2+1) for k in range(1,b)]),b)

%o A190407(415) # _Danny Rorabaugh_, Mar 26 2015

%o (PARI) th3(x)=1 + 2*suminf(n=1,x^n^2)

%o (th3(1/4)-1)/4 \\ _Charles R Greathouse IV_, Jun 06 2016

%Y Cf. A058331, A190404, A190405, A190406.

%K nonn,cons,easy

%O 0,2

%A _Clark Kimberling_, May 10 2011