login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers); based on row 1 of the natural number array, A000027.
10

%I #32 Oct 01 2024 13:17:01

%S 8,2,0,8,1,6,2,8,0,3,2,7,5,7,6,9,3,3,1,4,6,9,2,1,3,8,5,1,1,2,7,1,4,7,

%T 1,7,1,1,3,0,3,0,7,6,8,9,7,8,3,6,9,8,7,3,9,0,2,3,2,5,8,1,1,1,9,0,0,7,

%U 2,3,0,1,8,6,6,6,7,5,8,8,7,8,0,0,1,8,2,0,8,5,8,1,1,6,7,9,5,6,6,5,4,3,0,4,4,8,6,7,6,5,8,1,7,1,8,0,9,7,3,0

%N Decimal expansion of (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers); based on row 1 of the natural number array, A000027.

%C Suppose that F={f(i,j): i>=1, j>=1} is an array of positive integers such that every positive integer occurs exactly once in F.

%C Let G=G(F) denote the array defined by g(i,j)=(1/2)^f(i,j);

%C R(i)=Sum_{j>=1} g(i,j); i-th row sum of G;

%C C(j)=Sum_{i>=1} g(i,j); j-th column sum of G;

%C U(j)=Sum_{i>=1} g(i,i+j-1); j-th upper diagonal sum of G;

%C L(i)=Sum_{j>=1} g(i+j,j); i-th lower diagonal sum of G;

%C R(odds)=Sum_{i>=1} R(2i-1); sum, odd numbered rows of G;

%C R(evens)=Sum_{i>=1} R(2i); sum, even numbered rows of G;

%C C(odds)=Sum_{j>=1} R(2j-1); sum, odd numbered cols of G;

%C C(evens)=Sum_{j>=1} R(2j); sum, even numbered cols of G;

%C UT=Sum_{j>=1} U(j); sum, upper triangular subarray of G;

%C LT=Sum_{i>=1} L(i); sum, lower triangular subarray of G.

%C ...

%C Note that R(odds)+R(evens)=C(odds)+C(evens)=UT+LT=1.

%C ...

%C For the natural number array F=A000027:

%C R(1)=0.820816280327576933146921385113... (A190404)

%C R(2)=0.160408140163788466573460692556...

%C R(3)=0.0177040700818942332867303462782...

%C R(4)=0.00103953504094711664336517313909...

%C R(5)=0.0000314862704735583216825865695447...

%C ...

%C R(odds)=0.838551840434481240061632331355800... (A190408)

%C R(evens)=0.161448159565518759938367668644199...(A190409)

%C ...

%C C(1)=0.64163256065515386629... (A190405)

%C C(2)=0.28326512131030773259...

%C C(3)=0.066530242620615465175...

%C C(4)=0.0080604852412309303507...

%C C(5)=0.00049597048246186070148...

%C ...

%C C(odds)=0.7086590131172367153696485920526...(A190410)

%C C(evens)=0.29134098688276328463035140794... (A190411)

%C ...

%C D(1)=0.53137210011527713548... (A190406)

%C D(2)=0.25391006493009715683...

%C D(3)=0.062744200230554270960...

%C D(4)=0.0078201298601943136650...

%C D(5)=0.00048840046110854191952...

%C ...

%C E(1)=0.12695503246504857842... (A190407)

%C E(2)=0.015686050057638567740...

%C E(3)=0.00097751623252428920813...

%C E(4)=0.000030525028819283869970...

%C E(5)=0.00000047686626214460406264...

%C ...

%C UT=0.8563503956097795739814618239914245448... (A190412)

%C LT=0.1436496043902204260185381760085754551... (A190415)

%H Danny Rorabaugh, <a href="/A190404/b190404.txt">Table of n, a(n) for n = 0..10000</a>

%F A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers).

%F A190405: Sum_{k>=1} (1/2)^T(k), where T=A000217.

%F A190406: Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).

%F A190407: Sum_{k>=1} (1/2)^V(k), where V=A058331 (1+2*k^2).

%F Equals Product_{k>=1} 1 - 1/(2^(2*k + 1) - 1). - _Antonio Graciá Llorente_, Oct 01 2024

%F Equals A299998/2. - _Hugo Pfoertner_, Oct 01 2024

%e 0.820816280327576933146921385113...

%t f[i_, j_] := i + (j + i - 2)(j + i - 1)/2;

%t TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (* A000027 *)

%t r[i_] := Sum[2^-f[i, j], {j,1,400}]; (* C(row i) *)

%t c[j_] := Sum[2^-f[i,j], {i,1,400}]; (* C(col j) *)

%t d[h_] := Sum[2^-f[i,i+h-1], {i,1,200}]; (* C(udiag h) *)

%t e[h_] := Sum[2^-f[i+h,i], {i,1,200}]; (* C(ldiag h) *)

%t RealDigits[r[1], 10, 120, -1] (* A190404 *)

%t N[r[1], 30]

%t N[r[2], 30]

%t N[r[3], 30]

%t N[r[4], 30]

%t N[r[5], 30]

%t N[r[6], 30]

%t RealDigits[c[1], 10, 120, -1] (* A190405 *)

%t N[c[1], 20]

%t N[c[2], 20]

%t N[c[3], 20]

%t N[c[4], 20]

%t N[c[5], 20]

%t N[c[6], 20]

%t RealDigits[d[1], 10, 20, -1] (* A190406 *)

%t N[d[1], 20]

%t N[d[2], 20]

%t N[d[3], 20]

%t N[d[4], 20]

%t N[d[5], 20]

%t N[d[6], 20]

%t RealDigits[e[1], 10, 20, -1] (* A190407 *)

%t N[e[1], 20]

%t N[e[2], 20]

%t N[e[3], 20]

%t N[e[4], 20]

%t N[e[5], 20]

%t N[e[6], 20]

%o (Sage)

%o def A190404(b): # Generate the constant with b bits of precision

%o return N(sum([(1/2)^(1+j*(j+1)/2) for j in range(1,b)])+1/2,b)

%o A190404(409) # _Danny Rorabaugh_, Mar 25 2015

%Y Cf. A190405-A190412, A190415, A299998.

%K nonn,cons,easy

%O 0,1

%A _Clark Kimberling_, May 10 2011