login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 6 nonattacking grasshoppers on a toroidal chessboard of size n x n.
2

%I #11 Sep 12 2015 11:00:26

%S 0,0,0,384,19100,557808,5841780,41338400,209264796,859752800,

%T 2982181004,9131392296,25196132260,63968987264,151223202900,

%U 336724832384,711538908572,1437022315440,2787781494732,5219454908200,9464698212228

%N Number of ways to place 6 nonattacking grasshoppers on a toroidal chessboard of size n x n.

%C The Grasshopper moves on the same lines as a queen, but must jump over a hurdle to land on the square immediately beyond.

%H Vincenzo Librandi, <a href="/A190401/b190401.txt">Table of n, a(n) for n = 1..1000</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens, kings, bishops and knights</a> (in English and Czech)

%F Explicit formula: a(n) = 1/720*n^2*(n^10 -15n^8 -480n^7 +2245n^6 + 2400n^5 +27255n^4 -342480n^3 +639934n^2 +471600n -865080) + 1/4*n^2*(-1)^n*(8n^4 -40n^3 +17n^2 -272n +1608), n>8.

%F G.f.: -4x^4*(128x^24 -768x^23 -8x^22 +9258x^21 -17442x^20 -25593x^19 +103542x^18 -19695x^17 -252858x^16 +225766x^15 +297416x^14 -465166x^13 -63474x^12 +488076x^11 +515008x^10 +582376x^9 +2358586x^8 +2976026x^7 +6280504x^6 +4731396x^5 +2785972x^4 +664045x^3 +111570x^2 +4199x +96)/((x-1)^13*(x+1)^7).

%t CoefficientList[Series[- 4 x^3 (128 x^24 - 768 x^23 - 8 x^22 + 9258 x^21 - 17442 x^20 - 25593 x^19 + 103542 x^18 - 19695 x^17 - 252858 x^16 + 225766 x^15 + 297416 x^14 - 465166 x^13 - 63474 x^12 + 488076 x^11 + 515008 x^10 + 582376 x^9 + 2358586 x^8 + 2976026 x^7 + 6280504 x^6 + 4731396 x^5 + 2785972 x^4 + 664045 x^3 + 111570 x^2 + 4199 x + 96) / ((x - 1)^13 (x + 1)^7), {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 03 2013 °)

%Y Cf.: A190398, A190399, A190400.

%K nonn,easy

%O 1,4

%A _Vaclav Kotesovec_, May 10 2011