login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction of (1+sqrt(1+r))/r, where r=sqrt(2).
4

%I #13 Sep 08 2022 08:45:57

%S 1,1,4,6,1,2,2,2,1,1,6,1,179,46,1,1,3,2,1,1,3,6,3,1,1,1,1,2,1,1,56,1,

%T 1,1,1,66,1,1,2,17,8,2,7,12,1,1,8,1,2,2,1,1,2,1,12,1,2,2,2,2,1,1,1,8,

%U 1,1,1,1,2,1,2,5,1,6,8,1,1,1,2,7,1,9,1,2,5,7,1,6,1,10,1

%N Continued fraction of (1+sqrt(1+r))/r, where r=sqrt(2).

%C Equivalent to the periodic continued fraction [r,2,r,2,...] where r=sqrt(2). For geometric interpretations of both continued fractions, see A190281 and A188635.

%C a(n) = A154748(n+1) for n > 0. - _Georg Fischer_, Oct 14 2018

%H G. C. Greubel, <a href="/A190282/b190282.txt">Table of n, a(n) for n = 1..5000</a>

%t ContinuedFraction[(1 + Sqrt[1 + Sqrt[2]])/Sqrt[2], 50] (* _G. C. Greubel_, Jan 31 2018 *)

%o (PARI) contfrac((1 + sqrt(1 + sqrt(2)))/sqrt(2)) \\ _G. C. Greubel_, Jan 31 2018

%o (Magma) ContinuedFraction((1 + Sqrt(1 + Sqrt(2)))/Sqrt(2)); // _G. C. Greubel_, Jan 31 2018

%Y Cf. A154748, A188635, A190282.

%K nonn,cofr

%O 1,3

%A _Clark Kimberling_, May 07 2011