login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction of (x + sqrt(2 + 4x))/2, where x=sqrt(2).
3

%I #17 May 03 2024 19:53:30

%S 2,11,32,1,4,10,2,1,1,3,1,1,5,2,3,2,1,4,2,3,2,41,1,2,1,1,3,4,1,35,1,5,

%T 1,29661,2,1,1,2,1,1,1,1,1,2,5,2,2,2,1,1,1,5,15,2,1,1,1,2,7,1,1,1,13,

%U 1,1,1,1,20,2,1,2,1,1,1,1,1,4,1,1,1,1,3,14,1

%N Continued fraction of (x + sqrt(2 + 4x))/2, where x=sqrt(2).

%H G. C. Greubel, <a href="/A190259/b190259.txt">Table of n, a(n) for n = 1..10000</a>

%t (See A190258.)

%t ContinuedFraction[(Sqrt[2]+Sqrt[2+4Sqrt[2]])/2,100] (* _Harvey P. Dale_, Jun 16 2016 *)

%o (PARI) contfrac((sqrt(2) + sqrt(2+4*sqrt(2)))/2) \\ _G. C. Greubel_, Dec 26 2017

%o (Magma) ContinuedFraction((Sqrt(2) + Sqrt(2+4*Sqrt(2)))/2); // _G. C. Greubel_, Dec 26 2017

%Y Cf. A188635, A190258.

%K nonn,cofr

%O 1,1

%A _Clark Kimberling_, May 06 2011

%E Definition clarified by _Harvey P. Dale_, Jun 16 2016