%I #13 Feb 22 2020 02:12:17
%S 2,5,10,13,18,23,26,31,34,36,39,44,47,52,57,60,65,68,73,78,81,86,89,
%T 91,94,99,102,107,112,115,120,123,128,133,136,141,146,149,154,157,162,
%U 167,170,175,178,180,183,188,191,196,201,204,209,212,217,222,225,230,233,235,238,243,246,251,256,259,264,267,272,277,280,285,290
%N Positions of 0 in A190248.
%H G. C. Greubel, <a href="/A190249/b190249.txt">Table of n, a(n) for n = 1..2700</a>
%H Burghard Herrmann, <a href="https://www.fq.math.ca/Papers1/57-5/herrmann.pdf">How integer sequences find their way into areas outside pure mathematics</a>, The Fibonacci Quarterly (2019) Vol. 57, No. 5, 67-71.
%t u = GoldenRatio; v = u^2; w=u^3;
%t f[n_] := Floor[n*u + n*v + n*w] - Floor[n*u] - Floor[n*v] - Floor[n*w]
%t t = Table[f[n], {n, 1, 120}] (* A190248 *)
%t Flatten[Position[t, 0]] (* A190249 *)
%t Flatten[Position[t, 1]] (* A190250 *)
%t Flatten[Position[t, 2]] (* A190251 *)
%Y Cf. A190248, A190250, A190251.
%K nonn
%O 1,1
%A _Clark Kimberling_, May 06 2011