Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 03 2023 10:36:12
%S 1,2,3,5,7,11,13,17,23,31,37,53,71,73,113,127,131,137,151,157,173,211,
%T 223,227,233,251,257,271,277,311,313,317,331,337,353,373,521,523,557,
%U 571,577,727,733,751,757,773,1117,1123,1151,1153,1171,1213,1217,1223
%N Noncomposite numbers all of whose decimal digits are noncomposite numbers (1,2,3,5,7).
%H G. C. Greubel, <a href="/A190222/b190222.txt">Table of n, a(n) for n = 1..1000</a>
%H Chris Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/xpage/UnholeyPrime.html">Unholey prime</a>
%F a(n) >> n^k where k = log(10)/log(5) = 1.43067.... - _Charles R Greathouse IV_, Dec 28 2017
%t Join[{1}, Select[Range[2000], PrimeQ[#] && Intersection[{0, 4, 6, 8, 9}, IntegerDigits[#]] == {} &]] (* _T. D. Noe_, May 09 2011 *)
%o (Magma) [1] cat [n: n in PrimesUpTo(1223) | Set(Intseq(n)) subset [1, 2, 3, 5, 7]]; // _Arkadiusz Wesolowski_, Apr 16 2014
%o (PARI) is(k) = if(!isprime(k) && k != 1, return(0)); setminus(vecsort(digits(k), , 8), [1, 2, 3, 5, 7]) == [] \\ _Iain Fox_, Dec 28 2017
%o (PARI) is(n) = if(isprime(n), #setminus(Set(digits(k)), [1,2,3,5,7])==0, n==1) \\ _Charles R Greathouse IV_, Dec 28 2017
%Y Subsequence of A001742.
%K nonn,base
%O 1,2
%A _Jaroslav Krizek_, May 06 2011