login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190168
Number of peakless Motzkin paths of length n having no (1,0)-steps at levels 1,3,5,... .
3
1, 1, 1, 1, 1, 2, 4, 7, 12, 21, 38, 70, 130, 243, 457, 865, 1647, 3152, 6059, 11693, 22647, 44007, 85770, 167626, 328430, 644993, 1269413, 2503339, 4945897, 9788700, 19404866, 38526335, 76599502, 152503123, 304006284, 606745700, 1212335896, 2424964327, 4855454654
OFFSET
0,6
COMMENTS
a(n) = A190167(n,0).
LINKS
FORMULA
G.f. G=G(z) satisfies the equation z^2*(1-z+z^2)G^2-(1+z^2)(1-z+z^2)G +1+z^2=0.
G.f.: (1+1/x^2-sqrt(1+1/x^4-2/x^2-4/x-(4-4*x)/(1-x+x^2)))/2. - Matthew House, Feb 12 2017
D-finite with recurrence (n+2)*a(n) +2*(-n-1)*a(n-1) +(n+2)*a(n-2) +2*(-n+2)*a(n-3) +2*(-n+4)*a(n-5) +(n-8)*a(n-6) +2*(-n+7)*a(n-7) +(n-8)*a(n-8)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(5)=2 because we have hhhhh and uuhdd, where u=(1,1), h=(1,0), d=(1,-1).
MAPLE
eq := z^2*(1-z+z^2)*G^2-(1+z^2)*(1-z+z^2)*G+1+z^2=0: g:=RootOf(eq, G): Gser:=series(g, z=0, 46): seq(coeff(Gser, z, n), n=0..38);
MATHEMATICA
CoefficientList[Series[(1 + 1/x^2 - Sqrt[1 + 1/x^4 - 2/x^2 - 4/x - (4 - 4 x)/(1 - x + x^2)])/2, {x, 0, 38}], x] (* Michael De Vlieger, Feb 12 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 06 2011
STATUS
approved