OFFSET
0,6
COMMENTS
a(n) = A190167(n,0).
LINKS
Matthew House, Table of n, a(n) for n = 0..3142
FORMULA
G.f. G=G(z) satisfies the equation z^2*(1-z+z^2)G^2-(1+z^2)(1-z+z^2)G +1+z^2=0.
G.f.: (1+1/x^2-sqrt(1+1/x^4-2/x^2-4/x-(4-4*x)/(1-x+x^2)))/2. - Matthew House, Feb 12 2017
D-finite with recurrence (n+2)*a(n) +2*(-n-1)*a(n-1) +(n+2)*a(n-2) +2*(-n+2)*a(n-3) +2*(-n+4)*a(n-5) +(n-8)*a(n-6) +2*(-n+7)*a(n-7) +(n-8)*a(n-8)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(5)=2 because we have hhhhh and uuhdd, where u=(1,1), h=(1,0), d=(1,-1).
MAPLE
eq := z^2*(1-z+z^2)*G^2-(1+z^2)*(1-z+z^2)*G+1+z^2=0: g:=RootOf(eq, G): Gser:=series(g, z=0, 46): seq(coeff(Gser, z, n), n=0..38);
MATHEMATICA
CoefficientList[Series[(1 + 1/x^2 - Sqrt[1 + 1/x^4 - 2/x^2 - 4/x - (4 - 4 x)/(1 - x + x^2)])/2, {x, 0, 38}], x] (* Michael De Vlieger, Feb 12 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 06 2011
STATUS
approved