login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers 1 through 10000 sorted lexicographically in duodecimal representation (base 12).
7

%I #18 Jun 18 2017 13:47:12

%S 1,12,144,1728,1729,1730,1731,1732,1733,1734,1735,1736,1737,1738,1739,

%T 145,1740,1741,1742,1743,1744,1745,1746,1747,1748,1749,1750,1751,146,

%U 1752,1753,1754,1755,1756,1757,1758,1759,1760,1761,1762,1763,147,1764,1765

%N Numbers 1 through 10000 sorted lexicographically in duodecimal representation (base 12).

%C A190133 = inverse permutation: a(A190133(n)) = A190133(a(n)) = n;

%C a(n) <> n for n > 1.

%H Reinhard Zumkeller, <a href="/A190132/b190132.txt">Table of n, a(n) for n = 1..10000</a> (full sequence)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LexicographicOrder.html">Lexicographic Order</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Duodecimal.html">Duodecimal</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Lexicographical_order">Lexicographical order</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Duodecimal">Duodecimal</a>

%e a(13) = 1737 -> 1009 [doz];

%e a(14) = 1738 -> 100A [doz];

%e a(15) = 1739 -> 100B [doz];

%e a(16) = 145 -> 101 [doz];

%e a(17) = 1740 -> 1010 [doz];

%e a(18) = 1741 -> 1011 [doz];

%e largest term a(9026) = 10000 -> 5282 [doz];

%e last term a(10000) = 1727 -> BBB [doz], largest term lexicographically.

%o (Haskell)

%o import Data.Ord (comparing)

%o import Data.List (sortBy)

%o import Numeric (showIntAtBase)

%o import Data.Char (intToDigit)

%o a190132 n = a190132_list !! (n-1)

%o a190132_list =

%o sortBy (comparing (flip (showIntAtBase 12 intToDigit) "")) [1..10000]

%Y Cf. A190126 (base 2), A190128 (base 3), A190130 (base 8), A190016 (base 10), A190134 (base 16).

%K nonn,base,fini,full

%O 1,2

%A _Reinhard Zumkeller_, May 06 2011