login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} k*lcm(k,k')/gcd(k,k'), where k' is arithmetic derivative of k.
1

%I #20 Dec 30 2017 09:32:51

%S 0,4,13,17,42,222,271,319,373,1073,1194,1338,1507,3271,5071,5103,5392,

%T 6148,6509,7109,11519,17811,18340,19924,20174,30314,30341,31909,32750,

%U 60650,61611,61931,77177,99141,113841,114381,115750,146074,170410,177210,178891

%N a(n) = Sum_{k=1..n} k*lcm(k,k')/gcd(k,k'), where k' is arithmetic derivative of k.

%C Use lcm(1,0)=0 and gcd(1,0)=1.

%H G. C. Greubel, <a href="/A190122/b190122.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{k=1..n} k*A189036(k).

%e lcm(1,1')/gcd(1,1')*1+lcm(2,2')/gcd(2,2')*2+lcm(3,3')/gcd(3,3')*3=0+2/1*2+3/1*3=13 ->a(3)=13.

%p der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):

%p seq(add(lcm(der(i),i)/gcd(der(i),i)*i,i=1..n),n=1..50);

%t A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]];

%t Table[Sum[k*LCM[k, A003415[k]]/GCD[k, A003415[k]], {k, 1, n}], {n, 1, 50}] (* _G. C. Greubel_, Dec 29 2017 *)

%Y Cf. A003415, A189036, A190118, A190119, A190120.

%K nonn

%O 1,2

%A _Giorgio Balzarotti_, May 04 2011