login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers with prime factorization p^2*q^2*r^5 where p, q, and r are distinct primes.
1

%I #17 Mar 07 2024 01:29:51

%S 7200,14112,24300,34848,39200,47628,48672,83232,96800,103968,112500,

%T 117612,135200,152352,164268,189728,231200,242208,264992,276768,

%U 280908,288800,297675,350892,394272,423200,453152,484128,514188,532512,566048

%N Numbers with prime factorization p^2*q^2*r^5 where p, q, and r are distinct primes.

%H T. D. Noe, <a href="/A190114/b190114.txt">Table of n, a(n) for n = 1..1000</a>

%H Will Nicholes, <a href="https://willnicholes.com/2010/06/06/list-of-prime-signatures">List of prime signatures</a>, 2010.

%H <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a>.

%F Sum_{n>=1} 1/a(n) = P(2)^2*P(5)/2 - P(2)*P(8)/2 - P(4)*P(5)/2 - P(2)*P(7) + P(9) = 0.00053812627050585644544..., where P is the prime zeta function. - _Amiram Eldar_, Mar 07 2024

%t f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,5};Select[Range[900000],f]

%t With[{upto=600000},Select[#[[1]]^2 #[[2]]^2 #[[3]]^5&/@ Flatten[ Permutations/@ Subsets[Prime[Range[Ceiling[Surd[upto,5]+1]]],{3}],1]// Union,#<=upto&]] (* _Harvey P. Dale_, Jul 29 2018 *)

%o (PARI) list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\36)^(1/5), t1=p^5;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=q+1, sqrt(lim\t2), if(p==r,next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 20 2011

%Y Cf. A179665, A190011, A190012.

%Y Cf. A085548, A085964, A085965, A085967, A085968, A085969.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, May 04 2011