%I
%S 24,57,135,168,200,222,512,575,585,713,760,781,825,854,1161,1360,1475,
%T 1484,1485,1504,1780,1872,1960,2415,2444,2535,2784,3087,3096,3168,
%U 3216,3250,3360,3404,3531,3596,3844,3850,4235,4240,4410,4437,4512,4514,4810
%N Let sopfr(n) = A001414(n) denote the sum of the prime factors of n with multiplicity. The sequence lists numbers n such that if sopfr(n)=m and sopfr(m)=r, then n==r mod m with 0<r<m.
%C Trivial solutions with sopfr(n)=n and thus r=0 are excluded.
%e For sopfr(200)=2+2+2+5+5=16; 200=8 mod 16; and the sopfr(16)=2+2+2+2=8=r.
%Y Cf. A001414.
%K nonn
%O 1,1
%A _J. M. Bergot_, May 04 2011
%E Extended by _Ray Chandler_, May 11 2011
