login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rhombuses on an (n+1) X 5 grid.
1

%I #8 May 04 2018 12:04:35

%S 4,15,36,66,96,130,164,204,248,296,344,396,448,504,560,620,680,744,

%T 808,876,944,1016,1088,1164,1240,1320,1400,1484,1568,1656,1744,1836,

%U 1928,2024,2120,2220,2320,2424,2528,2636,2744,2856,2968,3084,3200,3320,3440

%N Number of rhombuses on an (n+1) X 5 grid.

%C Column 4 of A190098.

%H R. H. Hardin, <a href="/A190093/b190093.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4) for n>11.

%F Conjectures from _Colin Barker_, May 04 2018: (Start)

%F G.f.: x*(4 + 7*x + 6*x^2 + 2*x^3 - 10*x^4 - 5*x^5 + 2*x^7 + 4*x^8 - 2*x^9 - 4*x^10) / ((1 - x)^3*(1 + x)).

%F a(n) = n^2 + 28*n - 84 for n>7 and even.

%F a(n) = n^2 + 28*n - 85 for n>7 and odd.

%F (End)

%e Some solutions for n=3:

%e ..1..2....2..3....0..3....0..0....0..1....0..0....2..0....1..2....0..1....1..2

%e ..1..4....2..4....1..2....0..3....1..3....1..2....2..1....2..0....0..4....2..1

%e ..3..4....3..4....2..3....3..3....3..2....3..3....3..1....3..2....3..4....3..2

%e ..3..2....3..3....1..4....3..0....2..0....2..1....3..0....2..4....3..1....2..3

%Y Cf. A190098.

%K nonn

%O 1,1

%A _R. H. Hardin_, May 04 2011