Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 08 2022 08:45:56
%S 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,60,62,65,68,71,
%T 74,77,80,83,86,89,92,95,98,101,104,107,110,113,117,120,122,125,128,
%U 131,134,137,140,143,146,149,152,155,158,161,164,167,170,173,177,180,183,185,188,191,194,197,200,203,206,209,212,215,218
%N n + [n*s/r] + [n*t/r]; r=1, s=sin(2*Pi/5), t=csc(2*Pi/5).
%C This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
%C a(n) = n + [n*s/r] + [n*t/r],
%C b(n) = n + [n*r/s] + [n*t/s],
%C c(n) = n + [n*r/t] + [n*s/t], where []=floor.
%C Taking r=1, s=sin(2*Pi/5), t=csc(2*Pi/5) gives
%C a=A190082, b=A190083, c=A190084.
%H G. C. Greubel, <a href="/A190082/b190082.txt">Table of n, a(n) for n = 1..10000</a>
%F A190082: a(n) = n + [n*sin(2*Pi/5)] + [n*csc(2*Pi/5)].
%F A190083: b(n) = n + [n*csc(2*Pi/5)] + [n*(csc(2*Pi/5))^2].
%F A190084: c(n) = n + [n*sin(2*Pi/5)] + [n*(sin(2*Pi/5))^2].
%t r=1; s=Sin[2*Pi/5]; t=Csc[2*Pi/5];
%t a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
%t b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
%t c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
%t Table[a[n], {n, 1, 120}] (* A190082 *)
%t Table[b[n], {n, 1, 120}] (* A190083 *)
%t Table[c[n], {n, 1, 120}] (* A190084 *)
%o (PARI) for(n=1,100, print1(n + floor(n*sin(2*Pi/5)) + floor(n/sin(2*Pi/5)), ", ")) \\ _G. C. Greubel_, Mar 04 2018
%o (Magma) R:= RealField(); [n + Floor(n*Sin(2*Pi(R)/5)) + Floor(n/Sin(2*Pi(R)/5)): n in [1..100]]; // _G. C. Greubel_, Mar 04 2018
%Y Cf. A190083, A190084.
%K nonn
%O 1,1
%A _Clark Kimberling_, May 04 2011