login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,m)=Number of (n+1)X3 0..m arrays with every 2X2 subblock commuting with each of its horizontal and vertical 2X2 subblock neighbors
1

%I #5 Mar 31 2012 12:36:19

%S 21,83,30,205,129,51,419,362,243,88,713,839,701,562,128,1169,1638,

%T 1715,2049,903,197,1709,2923,3343,5879,3442,1754,292,2471,4834,5947,

%U 13342,10259,8223,2937,457,3381,7605,9789,26982,23790,28628,14492,5790,688

%N T(n,m)=Number of (n+1)X3 0..m arrays with every 2X2 subblock commuting with each of its horizontal and vertical 2X2 subblock neighbors

%C Table starts

%C ...21....83....205....419.....713....1169.....1709.....2471......3381......4543

%C ...30...129....362....839....1638....2923.....4834.....7605.....11434.....16493

%C ...51...243....701...1715....3343....5947.....9789....15499.....23561.....33877

%C ...88...562...2049...5879...13342...26982....49867....87001....143918....224458

%C ..128...903...3442..10259...23790...48875....91096...160377....267770....420837

%C ..197..1754...8223..28628...77358..181792...383152...749237...1371936...2357920

%C ..292..2937..14492..53045..146406..349085...740408..1460393...2698956...4662219

%C ..457..5790..35081.150208..481171.1308972..3134584..6868867..13933702..26279979

%C ..688..9993..64280.289063..945714.2606517..6273818.13842067..28288458..53533915

%C .1058.19236.150785.792360.3006488.9456818.25715484.63104546.141749332.293291390

%H R. H. Hardin, <a href="/A190023/b190023.txt">Table of n, a(n) for n = 1..2450</a>

%F Empirical for column m: a(n) = 2*a(n-1) +(m-1)*a(n-2) -2*m*a(n-3) +2*m*a(n-4) -m*a(n-5) for n>(7+2*A072649(m)), except for n>8 for m=1.

%F Empirical more generally for column m of T(n,m,k) for (n+1)X(k+1) 0..m arrays: a(n) = 2*a(n-1) +(m-1)*a(n-2) -2*m*a(n-3) +2*m*a(n-4) -m*a(n-5) for n>(k+5+2*A072649(m)), except n>(k+4+2*A072649(m)) for m=1 and k>1

%e Some solutions for n=4 m=4

%e ..3..0..0....0..4..0....3..3..3....3..3..0....0..1..3....2..3..0....4..2..0

%e ..3..0..0....3..0..4....0..0..0....0..0..3....0..0..1....0..0..3....3..0..2

%e ..0..3..0....0..3..0....0..0..0....0..0..0....0..0..0....0..0..0....0..3..0

%e ..2..0..3....1..0..3....3..0..0....0..0..0....1..0..0....2..0..0....3..0..3

%e ..0..2..4....0..1..0....4..3..0....2..2..2....4..1..0....0..2..1....0..3..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ May 04 2011