Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Feb 06 2024 19:30:49
%S 0,0,8,80,404,1392,3880,9208,19536,38096,69288,119224,196036,310008,
%T 474336,705328,1023216,1451904,2020232,2762848,3719420,4937200,
%U 6469424,8378184,10734664,13618168,17119288,21338760,26390452,32400592,39508656,47870200,57655752
%N Number of acute triangles on an n X n grid (or geoboard).
%C Place all bounding boxes of A280653 that will fit into the n X n grid in all possible positions, and the proper rectangles in two orientations: a(n) = Sum_{i=1..n} Sum_{j=1..i} k * (n-i+1) * (n-j+1) * A280653(i,j) where k=1 when i=j and k=2 otherwise. - _Lars Blomberg_, Feb 26 2017
%C According to Langford (p. 243), the leading order is (53/150-Pi/40)*C(n^2,3). See A093072. - _Michael R Peake_, Jan 15 2021
%H Lars Blomberg, <a href="/A190019/b190019.txt">Table of n, a(n) for n = 1..5000</a>
%H Margherita Barile, <a href="http://mathworld.wolfram.com/Geoboard.html">Geoboard</a>.
%H Eric Langford, <a href="https://www.jstor.org/stable/2688737">A problem in geometric probability</a>, Mathematics Magazine, Nov-Dec, 1970, 237-244.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AcuteTriangle.html">Acute Triangle</a>.
%F a(n) = A045996(n) - A077435(n) - A190020(n).
%Y Cf. A045996, A077435, A093072, A280653.
%Y Cf. A103429 (analogous problem on a 3-dimensional grid).
%K nonn
%O 1,3
%A _Martin Renner_, May 04 2011
%E Extended by _Ray Chandler_, May 04 2011
%E More terms from _Lars Blomberg_, Feb 26 2017