login
Number of ways to place n nonattacking composite pieces rook + rider[1,4] on an n X n chessboard.
5

%I #6 Sep 12 2015 11:00:25

%S 1,2,6,24,48,182,868,5752,22952,131766,912964,7556978,52602390,

%T 432795244,4121203656,44335718598,416447624724

%N Number of ways to place n nonattacking composite pieces rook + rider[1,4] on an n X n chessboard.

%C In fairy chess, the rider [1,4] is called a Girafferider.

%C a(n) is also number of permutations p of 1,2,...,n satisfying |p(i+k)-p(i)|<>4k AND |p(j+4k)-p(j)|<>k for all i>=1, j>=1, k>=1, i+k<=n, j+4k<=n

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens, kings, bishops and knights</a> (in English and Czech)

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Fairy_chess_piece">Fairy chess piece</a>

%Y Cf. A000170, A189837, A189850

%K nonn,hard

%O 1,2

%A _Vaclav Kotesovec_, Apr 29 2011