Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 31 2012 12:36:16
%S 4,14,14,28,44,28,46,94,94,46,68,158,200,158,68,94,238,342,342,238,94,
%T 124,330,524,596,524,330,124,158,434,732,926,926,732,434,158,196,550,
%U 972,1308,1444,1308,972,550,196,238,678,1236,1754,2060,2060,1754,1236,678
%N T(n,k)=Number of right triangles on a (n+1)X(k+1) grid
%C Table starts
%C ...4..14...28...46...68...94...124...158...196...238...284...334...388...446
%C ..14..44...94..158..238..330...434...550...678...818...970..1134..1310..1498
%C ..28..94..200..342..524..732...972..1236..1524..1840..2180..2544..2932..3344
%C ..46.158..342..596..926.1308..1754..2250..2794..3390..4026..4702..5426..6190
%C ..68.238..524..926.1444.2060..2784..3596..4492..5470..6516..7630..8820.10070
%C ..94.330..732.1308.2060.2960..4032..5250..6604..8082..9684.11388.13220.15144
%C .124.434..972.1754.2784.4032..5520..7224..9128.11218.13500.15938.18568.21328
%C .158.550.1236.2250.3596.5250..7224..9496.12044.14860.17948.21266.24852.28634
%C .196.678.1524.2794.4492.6604..9128.12044.15332.18990.23012.27354.32052.37032
%C .238.818.1840.3390.5470.8082.11218.14860.18990.23596.28678.34190.40166.46522
%H R. H. Hardin, <a href="/A189814/b189814.txt">Table of n, a(n) for n = 1..10025</a>
%F Empirical for columns
%F k=1: a(n) = 2*n^2 + 4*n - 2
%F k=2: a(n) = 6*n^2 + 26*n - 42 for n>3
%F k=3: a(n) = 12*n^2 + 88*n - 240 for n>8
%F k=4: a(n) = 20*n^2 + 228*n - 930 for n>15
%F k=5: a(n) = 30*n^2 + 468*n - 2478 for n>24
%F k=6: a(n) = 42*n^2 + 886*n - 6080 for n>35
%F k=7: a(n) = 56*n^2 + 1480*n - 12216 for n>48
%F k=8: a(n) = 72*n^2 + 2344*n - 23112 for n>63
%F k=9: a(n) = 90*n^2 + 3516*n - 40434 for n>80
%F k=10: a(n) = 110*n^2 + 5090*n - 67626 for n>99
%F k=11: a(n) = 132*n^2 + 7016*n - 105016 for n>120
%F k=12: a(n) = 156*n^2 + 9564*n - 162094 for n>143
%F k=13: a(n) = 182*n^2 + 12572*n - 236518 for n>168
%F k=14: a(n) = 210*n^2 + 16230*n - 337676 for n>195
%e Some solutions for n=3 k=3
%e ..2..3....2..1....0..2....0..1....3..1....1..3....4..2....2..2....1..1....3..2
%e ..1..2....0..3....0..3....0..2....1..3....1..2....2..1....2..1....0..2....1..3
%e ..4..1....3..2....4..2....5..1....5..3....4..3....5..0....5..2....2..2....2..0
%Y Column 1 is -A147973(n+4)
%Y Diagonal is A077435(n+1)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Apr 28 2011