Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Sep 01 2021 03:59:31
%S 9,1,1,1,1,1,1,1,1,1,10,110,1110,11110,111110,1111110,11111110,
%T 111111110,1111111110,11111111110,111111111100,1111111111100,
%U 11111111111100,111111111111100,1111111111111100,11111111111111100,111111111111111100,1111111111111111100,11111111111111111100,111111111111111111100,1111111111111111111000
%N Base-10 lunar factorials: a(n) = (lunar) Product_{i=1..n} i.
%C 0!, the empty product, equals 9 (the multiplicative identity) by convention.
%H M. F. Hasler, <a href="/A189788/b189788.txt">Table of n, a(n) for n = 0..200</a>
%H D. Applegate, M. LeBrun and N. J. A. Sloane, <a href="http://arxiv.org/abs/1107.1130">Dismal Arithmetic</a>, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
%H D. Applegate, M. LeBrun and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Sloane/carry2.html">Dismal Arithmetic</a>, J. Int. Seq. 14 (2011) # 11.9.8.
%H <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a>
%e 4! = 1 X 2 X 3 X 4 = 1, where X is lunar multiplication, A087062.
%o (PARI) apply( A189788(n)=if(n>9,for(k=10,n-1,n=A087062(n,k));n,9^!n), [0..30]) \\ _M. F. Hasler_, Nov 15 2018
%o (Python) # uses lunar_mul and lunar_add from A087062
%o from functools import reduce
%o def a(n): return reduce(lunar_mul, [9]+list(range(1, n+1)))
%o print([a(n) for n in range(31)]) # _Michael S. Branicky_, Sep 01 2021
%o (Python) # uses lunar_mul and lunar_add from A087062
%o from itertools import accumulate
%o def aupton(nn): return list(accumulate([9]+list(range(1, nn+1)), lunar_mul))
%o print(aupton(30)) # _Michael S. Branicky_, Sep 01 2021
%Y Cf. A087062 (lunar product), A087019 (lunar squares).
%K nonn,base
%O 0,1
%A _N. J. A. Sloane_, May 23 2011
%E a(0) = 9 prepended and minor edits by _M. F. Hasler_, Nov 15 2018