OFFSET
1,1
COMMENTS
Row 5 of A189617.
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..200
Robert Israel, Linear recurrence of order 147
Robert Israel, Maple-assisted derivation of recurrence
FORMULA
Linear recurrence of order 147 (see links). - Robert Israel, Oct 22 2019
EXAMPLE
Some solutions for 5 X 3:
0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0
1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1
1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0
0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1
MAPLE
Compatible:= proc(i, j) local Xi, Xj, k;
Xi:= Configs[i]; Xj:= Configs[j];
if Xi[6..10] <> Xj[1..5] then return 0 fi;
if Xi[1]=0 and ((Xi[6]=1 and Xj[6]=0) or (Xi[7]=1 and Xj[8]=0)) then return 0 fi;
if Xi[2]=0 and ((Xi[7]=1 and Xj[7]=0) or (Xi[8]=1 and Xj[9]=0)) then return 0 fi;
if Xi[3]=0 and ((Xi[7]=1 and Xj[6]=0) or (Xi[8]=1 and Xj[8]=0) or (Xi[9]=1 and Xj[10]=0)) then return 0 fi;
if Xi[4]=0 and ((Xi[8]=1 and Xj[7]=0) or (Xi[9]=1 and Xj[9]=0)) then return 0 fi;
if Xi[5]=0 and ((Xi[9]=1 and Xj[8]=0) or (Xi[10]=1 and Xj[10]=0)) then return 0 fi;
1
end proc:
T:= Matrix(1024, 1024, Compatible):
u:= Vector(1024, 1):
Tu[0]:= u:
for nn from 1 to 30 do Tu[nn]:= T . Tu[nn-1] od:
32, seq(u^%T . Tu[n], n=0..30); # Robert Israel, Oct 22 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 24 2011
STATUS
approved