login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Digital root of n^n.
3

%I #37 Feb 09 2023 21:56:42

%S 1,1,4,9,4,2,9,7,1,9,1,5,9,4,7,9,7,8,9,1,4,9,4,2,9,7,1,9,1,5,9,4,7,9,

%T 7,8,9,1,4,9,4,2,9,7,1,9,1,5,9,4,7,9,7,8,9,1,4,9,4,2,9,7,1,9,1,5,9,4,

%U 7,9,7,8,9,1,4,9,4,2,9,7,1,9,1,5,9,4,7

%N Digital root of n^n.

%C a(n) = A010888(A000312(n)).

%C For n >= 1, this sequence is periodic with period 18. The sequence repeats [1,4,9,4,2,9,7,1,9,1,5,9,4,7,9,7,8,9]. - _Nathaniel Johnston_, May 04 2011

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

%F From _Chai Wah Wu_, Feb 09 2023: (Start)

%F a(n) = a(n-18) for n > 18.

%F G.f.: (-8*x^18 - 8*x^17 - 7*x^16 - 9*x^15 - 7*x^14 - 4*x^13 - 9*x^12 - 5*x^11 - x^10 - 9*x^9 - x^8 - 7*x^7 - 9*x^6 - 2*x^5 - 4*x^4 - 9*x^3 - 4*x^2 - x - 1)/(x^18 - 1). (End)

%p A189510 := proc(n) return ((n^n-1) mod 9) + 1: end: seq(A189510(n), n=0..80); # _Nathaniel Johnston_, May 04 2011

%t digitalRoot[n_Integer?Positive] := FixedPoint[Plus@@IntegerDigits[#]&,n]; Table[If[n==0,0,digitalRoot[n^n]], {n,0,200}]

%t Join[{1},LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 4, 9, 4, 2, 9, 7, 1, 9, 1, 5, 9, 4, 7, 9, 7, 8, 9},86]] (* _Ray Chandler_, Aug 27 2015 *)

%o (Python)

%o def A189510(n): return (9,1,4,9,4,2,9,7,1,9,1,5,9,4,7,9,7,8)[n%18] if n else 1 # _Chai Wah Wu_, Feb 09 2023

%Y Cf. A010888, A030132, A145389.

%K nonn,base,easy

%O 0,3

%A _Vladimir Joseph Stephan Orlovsky_, May 02 2011

%E a(0) corrected by _Reinhard Zumkeller_, May 03 2011