login
Number of arrangements of n+1 nonzero numbers x(i) in -3..3 with the sum of floor(x(i)/x(i+1)) equal to zero.
1

%I #7 Mar 01 2023 13:16:12

%S 6,38,152,928,4920,27508,152358,852940,4796962,27117826,153988846,

%T 877458110,5015185460,28736333450,165022598514,949503677434,

%U 5472715411708,31592116727316,182623690514234,1057008913476932

%N Number of arrangements of n+1 nonzero numbers x(i) in -3..3 with the sum of floor(x(i)/x(i+1)) equal to zero.

%C Column 3 of A189498.

%H R. H. Hardin, <a href="/A189492/b189492.txt">Table of n, a(n) for n = 1..200</a>

%e Some solutions for n=5

%e .-3....2...-3...-2...-3....2....3...-1....2....2...-1...-3...-1....2....2...-1

%e .-2...-3...-1...-1...-2...-2...-1....2....2....1....2...-2...-1...-2...-3...-1

%e .-1....2...-2...-3...-2....3...-1....2...-2...-3....1....2...-3...-2...-2...-3

%e .-3....1....1...-3...-2...-3...-3...-1...-3....2...-1...-2...-3...-1....1....2

%e ..2....1....2....3....1...-2...-1....3....2....1....1...-3....1....2....1....1

%e .-2....3...-2...-2...-2...-1....1....1....1...-3....1...-3....1...-2....1...-2

%Y Cf. A189498.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 23 2011