Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Feb 07 2024 01:20:42
%S 0,1,70,1038,7398,35727,130768,400116,1062016,2531001,5529310,
%T 11272710,21639022,39559591,69283632,116910052,190977408,303286461,
%U 469431366,710400658,1053055398,1532253131,2192246528,3088876728,4290532688,5882825641,7969711934,10677299074,14156978846,18591603883,24195121104
%N Number of convex quadrilaterals on an n X n grid (or geoboard).
%C If four points are chosen at random from an n X n grid, the probability that they form a convex quadrilateral approaches 25/36 as n increases, by Sylvester's Four-Point Theorem (see the link). Thanks to _Ed Pegg Jr_ for this comment. - _N. J. A. Sloane_, Jun 15 2020
%H Tom Duff, <a href="/A189413/b189413.txt">Table of n, a(n) for n = 1..192</a>
%H Tom Duff, <a href="/A334708/a334708_3.txt">Data for tables A334708, A334709, A334710, A334711 for grids of size up to 192 X 192</a>.
%H Nathaniel Johnston, <a href="/A189413/a189413.c.txt">C program for computing terms</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConvexPolygon.html">Convex Polygon</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Quadrilateral.html">Quadrilateral</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SylvestersFour-PointProblem.html">Sylvester's Four-Point Problem</a>.
%Y Cf. A175383, A178256, A181944, A189345, A189412, A189414.
%Y This is the main diagonal of A334711.
%K nonn
%O 1,3
%A _Martin Renner_, Apr 21 2011
%E a(6) - a(22) from _Nathaniel Johnston_, Apr 25 2011
%E Terms beyond a(22) from Tom Duff. - _N. J. A. Sloane_, Jun 23 2020