login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189328
Number of nondecreasing arrangements of 5 numbers in 0..n with the last equal to n and each after the second equal to the sum of one or two of the preceding four.
1
2, 8, 11, 20, 21, 36, 31, 49, 42, 63, 51, 79, 60, 93, 72, 105, 80, 125, 89, 133, 104, 149, 109, 168, 117, 178, 135, 190, 138, 213, 147, 219, 166, 234, 166, 257, 176, 263, 197, 274, 196, 303, 205, 304, 227, 319, 225, 346, 234, 347, 259, 360, 254, 392, 262, 389, 290, 404
OFFSET
1,1
COMMENTS
Row 3 of A189326.
LINKS
FORMULA
Empirical: a(n) = -3*a(n-1) -5*a(n-2) -5*a(n-3) -2*a(n-4) +3*a(n-5) +8*a(n-6) +10*a(n-7) +8*a(n-8) +3*a(n-9) -2*a(n-10) -5*a(n-11) -5*a(n-12) -3*a(n-13) -a(n-14).
Empirical g.f.: x*(2 + 14*x + 45*x^2 + 103*x^3 + 180*x^4 + 264*x^5 + 326*x^6 + 350*x^7 + 322*x^8 + 258*x^9 + 173*x^10 + 97*x^11 + 40*x^12 + 11*x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 02 2018
EXAMPLE
All solutions for n=3:
..1....1....1....1....0....1....3....0....2....1....1
..2....2....3....2....1....1....3....3....3....1....1
..2....2....3....3....1....2....3....3....3....2....1
..3....2....3....3....2....3....3....3....3....2....2
..3....3....3....3....3....3....3....3....3....3....3
CROSSREFS
Cf. A189326.
Sequence in context: A074263 A295070 A009420 * A090746 A362869 A234924
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 20 2011
STATUS
approved