login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of 1,2,...,n satisfying p(i+6)-p(i)<>6 for all 1<=i<=n-6.
2

%I #26 Nov 08 2022 02:18:01

%S 1,1,2,6,24,120,720,4920,37488,319644,3033264,31784280,364902480,

%T 4538652840,61102571376,885045657564,13722397569072,226742901078120,

%U 3977354871110160,73816786920489720,1444940702597713008,29750236302549282948

%N Number of permutations p of 1,2,...,n satisfying p(i+6)-p(i)<>6 for all 1<=i<=n-6.

%C a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[6,6] on an n X n chessboard.

%H Vaclav Kotesovec, <a href="/A189285/b189285.txt">Table of n, a(n) for n = 0..24</a> (Updated Jan 19 2019)

%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, p. 644.

%H Vaclav Kotesovec, <a href="/A189285/a189285.txt">Mathematica program for this sequence</a>

%H George Spahn and Doron Zeilberger, <a href="https://arxiv.org/abs/2211.02550">Counting Permutations Where The Difference Between Entries Located r Places Apart Can never be s (For any given positive integers r and s)</a>, arXiv:2211.02550 [math.CO], 2022.

%F Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 11/n + 30/n^2)/e.

%F Generally (for this sequence is d=6): 1/e*(1+(2d-1)/n+d*(d-1)/n^2).

%Y Cf. A000255, A189281, A189282, A189283, A189284, A189271.

%K nonn,hard

%O 0,3

%A _Vaclav Kotesovec_, Apr 19 2011

%E Terms a(23)-a(24) from _Vaclav Kotesovec_, Apr 21 2012