login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189244
The n-th derivative of e^((2-x-x^2)/(1-x-x^2)), evaluated at x=1.
1
1, 3, -7, 9, 177, -3897, 65649, -1057851, 16606977, -238404789, 2305262889, 33442089057, -3560906733903, 182521828278351, -8055082800686367, 338022326927690397, -13915405899740874879, 566988435851123595411, -22784764731442383689127, 888283409438427072329529
OFFSET
0,2
COMMENTS
The n-th derivative of exp((2-x-x^2)/(1-x-x^2) is A(n,x) = n!*sum(m=1..n, sum(k=m..n, binomial(k-1,m-1)*binomial(k,n-k)*(2*x+1)^(2*k-n) * (-x^2-x+1)^(-m-k))/m!).
LINKS
Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2011.
FORMULA
a(n) = n!*sum(m=1..n, sum(k=m..n, binomial(k-1,m-1) *binomial(k,n-k) * (-1)^(m+k)*3^(2*k-n))/m!), a(0)=1.
E.g.f.: exp(x*(3+x)/(3*x+x^2+1)). - Alois P. Heinz, Sep 27 2016
MATHEMATICA
f[x_] := E^((2 - x - x^2)/(1 - x - x^2));
a[n_] := Derivative[n][f][1];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 27 2018 *)
PROG
(Maxima)
a(n):=n!*sum(sum(binomial(k-1, m-1)*binomial(k, n-k)*(-1)^(m+k) * 3^(2*k-n), k, m, n)/m!, m, 1, n)
CROSSREFS
Sequence in context: A337613 A152607 A118559 * A127789 A112105 A065501
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Apr 26 2011
STATUS
approved