OFFSET
0,2
COMMENTS
The n-th derivative of exp((2-x-x^2)/(1-x-x^2) is A(n,x) = n!*sum(m=1..n, sum(k=m..n, binomial(k-1,m-1)*binomial(k,n-k)*(2*x+1)^(2*k-n) * (-x^2-x+1)^(-m-k))/m!).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..388
Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2011.
FORMULA
a(n) = n!*sum(m=1..n, sum(k=m..n, binomial(k-1,m-1) *binomial(k,n-k) * (-1)^(m+k)*3^(2*k-n))/m!), a(0)=1.
E.g.f.: exp(x*(3+x)/(3*x+x^2+1)). - Alois P. Heinz, Sep 27 2016
MATHEMATICA
f[x_] := E^((2 - x - x^2)/(1 - x - x^2));
a[n_] := Derivative[n][f][1];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 27 2018 *)
PROG
(Maxima)
a(n):=n!*sum(sum(binomial(k-1, m-1)*binomial(k, n-k)*(-1)^(m+k) * 3^(2*k-n), k, m, n)/m!, m, 1, n)
CROSSREFS
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Apr 26 2011
STATUS
approved