login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Complementary Catalan triangle read by rows.
3

%I #12 May 08 2020 17:45:33

%S 0,1,0,0,2,0,3,0,3,0,0,8,0,4,0,10,0,15,0,5,0,0,30,0,24,0,6,0,35,0,63,

%T 0,35,0,7,0,0,112,0,112,0,48,0,8,0,126,0,252,0,180,0,63,0,9,0,0,420,0,

%U 480,0,270,0,80,0,10,0,462,0,990,0,825,0,385,0,99,0,11,0

%N Complementary Catalan triangle read by rows.

%C T(n,k) = A189231(n,k)*((n - k) mod 2). For comparison: the classical Catalan triangle is A053121(n,k) = A189231(n,k)*((n-k+1) mod 2).

%C T(n,0) = A138364(n). Row sums: A100071.

%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostCatalanNumbers">The lost Catalan numbers</a>

%e [0] 0,

%e [1] 1, 0,

%e [2] 0, 2, 0,

%e [3] 3, 0, 3, 0,

%e [4] 0, 8, 0, 4, 0,

%e [5] 10, 0, 15, 0, 5, 0,

%e [6] 0, 30, 0, 24, 0, 6, 0,

%e [7] 35, 0, 63, 0, 35, 0, 7, 0,

%e [0],[1],[2],[3],[4],[5],[6],[7]

%p A189230 := (n,k) -> A189231(n,k)*modp(n-k,2):

%p seq(print(seq(A189230(n,k),k=0..n)),n=0..11);

%t t[n_, k_] /; (k>n || k<0) = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = t[n-1, k-1] + Mod[n-k, 2] t[n-1, k] + t[n-1, k+1];

%t T[n_, k_] := t[n, k] Mod[n-k, 2];

%t Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* _Jean-François Alcover_, Jun 24 2019 *)

%Y Cf. A053121, A162246, A057977, A189231.

%K nonn,tabl

%O 0,5

%A Peter Luschny, May 01 2011